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Some of the basic notions of chemistry, associated with an energy function 
of several variables, are shown to be of topological character. Properties of 
potential energy hypersurfaces, structural relations, models for interconver- 
sion processes and transformations between such models suggest a topological 
theory (reaction topology) for the analysis of potential energy hypersurfaces. 
By introducing appropriate topologies into the nuclear configuration space 
R and equivalent topologies on the energy hypersurface E, rigorous 
definitions are given for fundamental chemical concepts such as molecular 
structure and reaction mechanism. These definitions are based on the proper- 
ties of the expectation value of energy, a quantum mechanical observable. 
Topologies based on curvature, structural and energetic relations of the 
energy hypersurface are proposed for a theoretical interpretation of molecular 
processes. 
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1. Introduction 

Energy hypersurfaces are of fundamental importance in chemistry for explaining 
molecular properties or chemical processes associated with an energy function 
of several (continuous) variables. Most often these variables are nuclear position 
coordinates and the associated Born-Oppenheimer  energy functional [1] gener- 
ates a potential energy hypersurface. Such potential surfaces of polyatomic 
molecules have been used extensively to explain molecular geometry, spectra, 
conformational properties and chemical reactions [2]. Computer-aided organic 
synthesis design and the study of chemical reaction networks [3, 4] are the areas 
where potential surfaces are expected to find an increasing number of applica- 
tions. 
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Energy hypersurfaces have distinct geometrical and topological properties. Reac- 
tion coordinates and local geometrical properties of minima and transition 
"states" on petential surfaces have been analyzed by several authors [5-28] and 
particular emphasis has been placed on reaction path properties [5, 9-20, 23-25]. 
The above studies, especially earlier results on the theory of intrinsic reaction 
coordinate [5, 23-25] have provided the basis for a global topological theory of 
multidimensional energy surfaces. A topological technique has been used in a 
study of th~ sign variation of wavefunctions about conical intersections of 
potential surfaces [28], and the topological features of triatomic potential surfaces 
have been discussed by Davidson [29]. Reviews of methods and models used in 
the analysis of conformational energy hypersurfaces may be found in references 
[17, 21, 22]. Some of the relevant aspects of differential geometry have been 
recently reviewed by Tachibana and Fukui [23]. 

The energy hypersurface model, however, is not restricted to the study of 
geometry changes. By considering more general parameters of the energy 
expectation value, e.g. orbital exponents of an approximate molecular wavefunc- 
tion, an energy hypersurface may be defined over the space of such parameters 
[22]. By calculating the slope and curvature properties of the hypersurface 
(generalized "forces" and "force constants"), relations between optimum 
wavefunctions may be determined and utilized [30]. By further generalizing the 
energy expectation value functional, one may replace some of the integer para- 
meters (e.g. quantum numbers or nuclear charges) by continuous variables. 
Whereas only those points of the resulting hypersurface over the space of such 
variables may correspond to true chemical structures where all variables take 
integer values, nevertheless, important relations between various chemical struc- 
tures may be derived by utilizing properties of a continuous hypersurface. Such 
a technique has been applied to derive electronic energy inequalities for iso- 
electronic molecules [31]. 

Among the molecular expectation values that may be represented as a hypersur- 
face (e.g. various one electron properties, absolute value of dipole moment, 
diamagnetic susceptibility, etc), the total energy is of unique importance. Physi- 
cally, energy is one of the most influential factors determining conformational 
changes and chemical reactions. Powerful theorems, involving the molecular 
total energy or its components, such as the variation principle, Hellmann- 
Feynman theorem or the virial theorem, are routinely used to determine and 
analyse approximate molecular wavefunctions. Consequently, the theory of 
energy hypersurfaces is an underlying feature throughout most of theoretical 
chemistry. 

Precise description of nuclear geometry changes within the Born-Oppenheimer 
model requires the introduction of a metric into the nuclear configuration space 
R. However, a full utilization of the advantages of a model based on a metric 
space is seldom possible, since accurate calculation of even small portions of 
potential hypersurfaces of polyatomic molecules may often present an immense 
computational problem. Fortunately, many chemical concepts are inherently 
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topological in nature, e.g. molecular structure or reaction mechanism, what 
suggests the use of topological methods, with or without reference to metrization. 
Whereas in the interpretation of potential surface calculations reference has 
often been made to topological concepts, the expression, "topology", has been 
used in a very general sense of the word and a precise definition of the actual 
topology has usually been omitted. In most studies the emphasis has been placed 
on the metric properties of the nuclear configuration space R, although implicit 
in the application of a metric is the topology based on the e-neighborhoods 
generated by the metric ("metric topology"). The metric topology, however, 
although powerful on its own right, does not offer significant departure from 
the original metric space model and does not lead to clear cut generalizations 
of certain chemical concepts. 

2. Motivation and Objectives of a Topological Theory 

Many of the common chemical concepts of stereochemistry, conformation analy- 
sis, or reaction mechanisms are usually described by geometrical models, with 
reference to nuclear positions in the 3-dimensional real space, or by referring 
to points in an abstract nuclear configuration space R. However, even within 
the framework of the Born-Oppenheimer approximation any solution for the 
nuclear wavefunction ~nuc(_r) in a potential field supplied by the electrons does 
result in a distribution of nuclear positions. Usually, the wave-package nature 
of nuclei is taken into account in an indirect way, e.g. as in vibrational analysis, 
nevertheless, the starting point of such an analysis is a geometrical model, the 
"equilibrium" nuclear geometry of the molecule. Although nuclei, being much 
heavier than electrons, are certainly more "particle-like" than electrons, 
nevertheless, by treating nuclei and electrons on an equal basis it is more justified 
to refer to nuclear distributions than to nuclear positions, just as one refers to 
electron distribution and not to electronic positions in a molecule. This suggests 
that geometrical concepts can be replaced by topological concepts in most of 
molecular physics. 

Qualitatively speaking, topology can be described as "rubber geometry". The 
precise shape of a "topological object" is of little importance, the analysis is 
rather focussed on the way the parts are connected. A somewhat oversimplified 
example for a topological description of a molecule is the figure presenting the 
results of an X-ray structure determination, showing ellipsoids rather than precise 
nuclear positions. The topological counterparts of these ellipsoids are open sets 
of a topological space. One important property of these sets is that they cover 
and in fact include the entire space over which the topology is defined. 

Up to date no comprehensive topological theory of energy hypersurfaces has 
been developed and this work is an attempt toward such a theory. Some earlier 
work on subsets of energy hypersurfaces may serve as a starting point for the 
development of a topological theory. Recently various partitioning schemes of 
the nuclear configuration space R have been proposed [32, 33]. The subsets of 
the nuclear configuration space R, involved in these partitionings, are directly 
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related to familiar chemical concepts such as reaction mechanism, chemical 
structure, minimum energy path or energy of activation. Based on the curvature 
properties of the energy hypersurface E defined over R it is possible to determine 
those coordinate domains which are the most likely to contain the ideal, minimum 
energy reaction paths [32]. A complete partitioning of the space R may be given 
by a hierarchy of disjoint domains" D~,i : 

R =[..]D i~ wDexd (1) 
~,i 

where index ~ refers to the number of negative canonical curvatures in a locally 
defined subspace, orthogonal to the gradient, or to path vector _a if the gradient 
vanishes [32]. The index i is the index of ordering for each D ,  type. Do domains 
are of special interest, since all minima and saddle points of transition "states" 
belong to Do domains, that is, Do domains reflect the distribution of the chemi- 
cally most important critical points of E. Furthermore, minimum energy reaction 
paths are stable only in Do domains. The larger the index tz, the less likely that 
a minimum energy path enters D,.  Domain Dexcl contains all points where the 
energy hypersurface is a poor approximation to the Born-Oppenheimer energy 
expectation value. 

A second partitioning scheme, proposed for the nuclear configuration space R, 
is based on the number and type of critical points of the E(r) hypersurface 
[33], and is governed by Morse's critical point inequalities [34]. Steepest descent 
paths are ordered into equivalence classes according to their extremities which 
are either critical points or points in D~xcl. These equivalence classes of steepest 
descent paths imply an equivalence relation for points of space R which leads 

r (l)l to the definition of catchment regions {C r<~} for all of the critical points l rc ~, 
_r~ ~ ~ R. A complete partitioning of the R space is given as 

R - ~ - ~ J C  -r~ k.)C/5 .... k.)/~exc 1 (2) 
l 

where C b .... is the catchment region of the closure of the excluded domain Dexol 
[32]. It has been shown that both chemical structure and reaction mechanism, 
perhaps the two most fundamental concepts of chemistry, can be defined in 
terms of the C r~ catchment regions, i.e. in terms of open sets of the underlying 
R space [33]. Whereas these definitions are strictly quantum mechanical since 
they are based on properties of a quantum mechanical observable, energy, and 
the associated expectation value functional _E(r), the fact that the typical C ~i) 
catchment region of a minimum is a set open in the usual metric of R, clearly 
suggests a topological treatment. 

The analysis of the molecular charge density in the real, Euclidean three space 
3R can be given in terms of catastrophe theory [35]. Based upon such an analysis 
[35, 36], a definition for molecular structure may be given by using molecular 
graphs, defined by "bond paths" of the charge density gradient field [36-37]. It 
has been conjectured [38] that a molecular structure definition, based on the 
three space topology of charge density is related to the definition given by the 
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catchment regions [33], i.e. to the topological properties of the nuclear configur- 
ation space. One should note, however, that the catchment region definition of 
molecular structure [33] distinguishes between all stable conformers, optical 
isomers and cis-trans isomers, whereas the molecular structure concept based 
upon bond graphs of the charge density gradient field [36-38] does not, since 
it assigns identical graphs to some of the above structurally different chemical 
species. 

The third partitioning of the nuclear configuration space results in subsets of R 
defined by equipotential contour hypersurfaces containing critical points of E(_r) 
[39]. These subsets generate the "critical level topology" TF of R. This topology 
is directly related to the number and distribution of various critical points of the 
hypersurface E and it is partially determined by critical point inequalities [34]. 
The topology Tv is ideally suited for the analysis of energy requirements of 
conformational or reaction processes. 

Many of the topological features of the hypersurface are determined by the 
critical points {r~ ) }. For a general hypersurface the relations between the number 
of various types of critical points are given by the Morse inequalities [34] and 
are extensively used in topological analysis [40-42]. Stronger relations, providing 
both lower and upper bounds for the number of critical points of a given type 
have been derived for an important class of energy hypersurfaces [43]. In chemical 
applications, various interrelations between critical points on energy hypersur- 
faces have been studied [5-17, 21-33, 43-46]. Following the notations of refs. 
21 and 32 each critical point _rc is characterized by index a, the number of 
negative eigenvalues of the Hessian matrix _H(_rc) at _to It has been demon- 
strated earlier [21] using a series of model surfaces that the number, type and 
distribution of critical points are the key features determining the fundamental 
morphology and the complexity of chemical processes on the hypersurface. Since 
the number of minima (index ;t = 0), various saddle points (0 < i < n) and maxima 
(a = n) are interrelated, [34, 41-43], these relations place limits on the number 
of possible reaction mechanisms [21]. Besides the constraints on the number of 
various critical points, their distribution (relative position) is also of importance. 
Although precise determination of their location is a metric space problem rather 
than a topological one, a topological characterization of this distribution has 
been given in terms of catchment regions [33]. By regarding two critical points 
neighbours if and only if the corresponding catchment regions have a common 
boundary point [33], a neighbour relation may be defined: 

N(_r~ ), 
_,c : = ]0 otherwise. (3) 

~: (i) (i)'~ (i) r~) That is, l~r ; is 1 if _rc and _ are neighbours and 0 if they are 
non-neighbours. This neighbour relation for the catchment region partitioning, 
combined with the general results of critical point theory [41-43] results in 
important inequalities governing the number of chemical structures and reaction 
mechanisms on a given hypersurfaee [33]. The same technique is applicable for 
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studying the relative distribution of critical points on energy component 
hypersurfaces [21, 43, 44]. 

Homotopy theory of differential topology [41, 42, 47, 48] is simply described as 
the theory of continuous deformations. In the present work we shall apply the 
concept of homotopy of reaction paths to arrive at a topological definition of 
reaction mechanisms, and we shall show that this definition is consistent with 
the one given in an earlier study [33]. Homotopy theory is closely linked to 
catastrophe theory [49, 50]. Catastrophe theory deals with sudden, discontinuous 
changes of mathematical models caused by smooth, continuous changes in some 
control parameters. Its application to energy hypersuffaces provides an intuitively 
transparent interpretation of various catchment regions, since C r~ may be 
regarded as the basin associated with critical point attractor _r~ ) [33]. Boundaries 
of catchment regions form the catastrophe set of the hypersurface, since the 
assignment of a point moving smoothly in the nuclear configuration space changes 
abruptly from one critical point to another at the boundary of a catchment 
region. In addition to the analysis of structural stability and reaction path 
problems on a given hypersurface, catastrophe theory is applicable for the analysis 
of topological changes of the calculated hypersurface, caused by variations in 
the approximate wavefunctions. Orbital exponents or contraction coefficients or 
some other parameters of an approximate molecular wavefunction take the role 
of control parameters, and the topological changes induced by variations of these 
control parameters can be studied by catastrophe theory. In a topology based 
on the catchment region partitioning the disappearance or creation of critical 
point attractors _rc and a change in the neighbour relation (3) of two existing 
critical points correspond to elementary catastrophes of the bifurcation or conflict 
type. The family of hypersurfaces generated by variations in the control para- 
meters, i.e. the universal unfolding of E, yields all topologically distinct descrip- 
tions of the molecular system, within the constraints of the given approximation 
for wavefunctions t~. 

In this study we analyse a global topological model of energy hypersuffaces, 
which unifies some earlier geometrical models into a single mathematical 
framework. In particular, we shall 
(1) develop a model of the nuclear configuration space R in which points of 

nuclear geometries, as basic chemical entities, are replaced by open sets of 
R, where R is defined as a topological space, 

(2) prove that partitionings of R based upon curvature or catchment region 
properties lead to mathematically rigorous global topologies of both R and 
the energy hypersurface E, 

(3) show that the description of reaction mechanisms in terms of a sequence of 
catchment regions is equivalent to a description based on homotopically 
equivalent reaction paths 

(4) propose topological definitions for chemical structure and reaction mechan- 
isms as open sets of a topological space, reaction topology (R, Tc) 

(5) show by the examples of the D ,  domain, catchment region and energy level 
topologies how a combination of a set of chemical properties leads to new 
topologies on R and E. 
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3. Topology of Potential Energy Hypersurfaces 

Topology may be thought of as a generalization of geometry in which all structural 
features are swept away except those relevant to the preservation of the continuity 
of certain functions. General  topology [51] is the abstract study of nearness, 
neighbourhoods, connectedness and continuity. In the present study we shall 
develop a topological model for a special class of hypersurfaces: potential energy 
hypersurfaces. In a subsequent study we shall consider more general hypersur- 
faces. For easy reference a short list of topological definitions is given in the 
Appendix. 

The potential energy hypersurface E(_r) of a molecular system is usually defined 
within the framework of the Born-Oppenheimer  [1] or an equivalent approxima- 
tion based on the separation of "slowly changing" and "rapidly changing" 
variables [52], and is not strictly valid. Nevertheless, it is an excellent approxima- 
tion and gives insight into most low-energy chemical processes on the molecular 
level. E(_r) is defined over the n-dimensional nuclear configuration space R. It 
is often convenient to choose R as . the  n ' = 3 N  dimensional space of the 
mass-weighted cartesian coordinates of the N nuclei present in the molecular 
system. In such a model special consideration must be given to the 3 translational 
and particularly to the 3 rotational degrees of freedom of the molecular system 
as a whole, by defining a rotating frame fulfilling the Eckart  conditions [53, 54]. 
Similar conditions may be applied to give an equivalent description of the 
molecular system by using an n = 3N - 6 dimensional R space of some suitably 
chosen internal coordinates 1. 

For special choices of the coordinates of the nuclear configuration space R 
subspaces mR of R may be defined which allow for substantial simplification of 
a topological analysis. These subspaces may allow various compactifications, e.g. 
transformations into circles or hyperspheres by the Alexandrov one-point com- 
pactification [47, 48]. For coordinates along which the energy hypersurface is 
periodic [21], conditions analogous to the Born-Kgtrmfin boundary conditions 
lead to a mapping of a subset onto a torus [40]. In such cases the topological 
analysis may be restricted to an energy function defined over a hypersphere or 
torus (see Fig. 1). 

Throughout  the following discussion we shall always refer to R, however, it 
should be kept in mind that the same topological analysis is applicable to subsets 
of the above types. 

3. i .  Metric Properties and  the Metric Topologies 

For the analysis of nuclear motions, using generalized coordinates, a metric may 
be introduced into space R by defining the element of arc ds as 

ds 2 = gi~ dr i dr j, (4) 

1 In deviation from the common custom the left superscript, indicating the dimension of the space, 
will be usually omitted if this dimension is n, that is, we shall write simply R for "R. On the other 
hand, the left superscript 1 will be always used for a one dimensional space 1R. 
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Fig. la. Sphere S is the Alexandrov one- 
point compactification of the (x, y) plane 
A. The line passing through the "north 
pole" assigns point r ~ A to point r' e S. 
The "ideal point of infinity" of plane A 
is mapped onto "north pole" oo of the 
sphere 

P 

b // , ,  

..... U 
r / 

0 / "  

b) 

Fig. lb. The unit cell U of a subspace 
2R c R over which E is periodic, is map- 

,,/ _d ped onto torus T. Intervals [a,b],_ _ / /  
f . . . . .  [_c,_d] and [_a,_c], [_b,_d], pairwise 

Z _  equivalent by periodicity, are mapped 
onto unique circles on the torus with 
common point p, the common image 

/ / C  of equivalent points a, b, c, and d / . . . .  

and a re la ted  metr ic  of the "+IR = R | 1R space,  e m b e d d i n g  the  energy  hyper -  
surface  m a y  be  given [32] by 

n+lds2 = n+lgij n+ldri n+ldri. (5) 

H e r e  g~j and  "+lg~ i are the cor responding  R i e m a n n i a n  met r ic  tensors.  The  ele- 
men t s  of arc, ds and n+lds, are infinitesimal d i sp lacements  along pa th  P c R and 
a long the cor responding  relief pa th  n+lp  c "+~R, respect ive ly  [32]. 

T h e  hypersur face  E(r_) is a s sumed  to be  a cont inuous  and infinitely different iable  
funct ion at mos t  chemical ly  impor t an t  points  _r e R.  For  po lya tomic  molecules ,  
however ,  some  of the der ivat ives  of E(r_) m a y  b e c o m e  discont inuous  at intersec-  
t ions of potent ia l  surfaces  describing var ious  exci ted e lect ronic  states [55, 28, 29], 
and mos t  a p p r o x i m a t e  solut ions for  the E = <~Vls expec ta t ion  value do not  
give physically meaningfu l  results in the n e i g h b o u r h o o d  of cou lomb  singularit ies 
of coincident  nuclear  posit ions.  A union of ne ighbourhoods  of such points  define 
the doma in  Dexcl, which doma in  requires  special  t r e a t m e n t  [32, 33]. 
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In order to obtain a function E'(_r), twice continuously differentiable (E'(r_)c 
C 2) over the entire nuclear configuration space R, we shall choose a bounded, 
continuous function e(_r) over the closure/3~x~l with the following properties1: 

(1) e:/)~xc~O 1R (6) 

(2) e E C 2 (7) 

(3) e(_r')= lim E(_r) (8) 
_r~_r' 

r ~ D Cxcl 

for every element r' on the boundary of Dexcl. 

(4) relations analogous to (3) are valid for all first order and 
(5) for all second order partial deviatives of e(_r) and E(_r). 
Such a function e(_r) is a twice continuously differentiable extension of E(_r) 
from D~xcl to Dexcl. 

In the following E'(_r) will be regarded 
E'(_r) ~ C 2, defined as 

E'(r_) = E(_r) if _r c D~o, 

E ' ( D  = e (r) i f  r ~ Dexd. 

as the hypersurface E'(r) :R ~ 1R, 

(9a) 

(9b) 

Furthermore, unless special distinction will be necessary, the extended E ' ( r )  
hypersurface will be investigated and the distinguishing apostrophe will be 
omitted. Although not necessary for the present analysis, we may also require 
that at points _r of coincident nuclear positions e (_r) takes the energy value of 
the isoelectronic molecular system in which the set of coincident nuclei is replaced 
by the nucleus of the corresponding united atom [29, 31]. 

An open sphere S(p, (5) of radius 8 about point _p in the nuclear configuration 
space R is defined as 

S(_p, 8) = {_r: _r c R, d(_p, _r) < 8}, (10) 

where d(p, r) is the distance function in the given metric [32]. The metric top- 
ology T on R is generated by the class of open spheres in R as subbase, thus 
R is a topological space (R, T) with a unique topology T induced by the metric. 
The metric topology "+iT of "+IR is defined similarly in terms of open spheres 

"+IS("+Ip,_ 8) = {n+lr : "+lr_ ~ "+IR, "+ld("+lp, "+lr)_ < 8}, (11) 

where "+1d("+1p,"+1s is the distance function in the metric of "+IR. The 
class of "+lS("+lp, 8) open spheres in "+IR form a subbase for the unique top- 
ology "+iT, thus (-" +IR, "+iT) is a topological space with the metric topology "+iT. 

1 In the topological sense D~x~l is not necessarily a domain since it may be disconnected. In spite 
of this, for sake of keeping the terminology simple Dexcl will be referred to as a domain, unless its 
potential disconnectedness will have some significance in our analysis. 
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It is useful to remember that E(_r) with the extended interpretation has several 
intimately related but distinctly different meanings, depending on the context. 
Whenever necessary, different notations will be used to emphasise a particular 
interpretation. 

E(_r) may refer to the energy value at point _r, 

E(_r) ~ 1R. (12) 

E(_r) may also refer to the energy expectation value functional 

_E(_r):R ~ 1R, _E(_r)~ C 2 , (13) 

which assigns the above E(_r) values to points _r~R. E(f)  may also mean 
the energy hypersurface E embedded in the space "+IR, i.e. the point set 
E c "+IR 

n + l  r n + l  r n + l ~  n + l  i ' \ n + l  n + l  E =  _: _~ •, r =r'(i<_n), r =E(r),reR}. (14) 

Here on the right hand side of Eq. (14) E(r)  refers to the function value at 
point r c R whereas on the left hand side of the relation E means a point set 
in "+IR. 

A mapping _E between R and E c "+~R, 

E_ :R--> E (15) 

is defined by the E(r)  functional as 

_E (_r) = "+l_r, (16) 

where 

"+lri = ri(i <-n) (17a) 

and 
n + l  n + l  r = E(r),_r e R. (17b) 

Since E c"+IR is defined as the range of mapping _E:R ~n+aR, which has 
domain the entire space R, it is clear that E is continuous for any pairs of 

n+l'Tr n+lR n+lTr o en topologies T'  of R and J z  of E c where the z-  P sets in E are 
images of T'-open sets in R. 

�9 n + l  n+a R The metric topology T of defines a relative topology "+aTE on the energy 
hypersufface E, E c "+IR : 

,+aTz r,+a G ,+a G =,+a G ,+a G -+aT} =~ z: ~ c~E, e (18) 

that is, the "+aTz-open subsets of E are the intersections of the "+IT-open 
subsets of n+aR with the hypersurface E(_r). With this relativization of "+iT 
to /3, the topological space (E, ~+aTz) is a subspace of topological space 
("+aR, "+iT): 

(E, "+aTE) = ("+IR, "+aT). (19) 
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In order to establish relations between topologies on R and topologies on the 
hypersurface E, we shall rely on the mapping _E and on the functional properties 
of _E(_r). The construction of space n+lR = R |  as a product space is reflected 
in metric n+agij and in the induced relative topology "+~TE on E. The extended 
_E(_r) functional is continuous in the metric of R by construction, consequently 
the mapping 

E: (R, T ) ~  (E, "+aTz) (20) 

is continuous with respect to topologies T and "+1TE. It should be noted however, 
that continuity depends on the actual topologies chosen and it is by no means 
guaranteed for arbitrary topologies. The inverse E -~ of E is clearly a projection 
from E to R, 

E -1 = _IIz: E - R ,  (21) 

where 0E is a restriction of projection 

_II: n+lR ~ R  (22) 

to subset E c "+IR, and it is continuous since E = _II~ 1 maps T-open sets of R 
onto n+XTE-open sets of E. The _E(_r) functional is single valued, and the 
E : R  ~ E  mapping is one-one and onto by definition. Consequently, _E is a 
homeomorphism between topological spaces (R, T) and (E, "+ITE). That is, the 
above two spaces are topologically equivalent, which property will be utilized 
in analysing the energy hypersurface E in terms of topological properties of the 
nuclear configuration space R. 

3.2. Topologies Based on Curvature Properties 

The D ,  domain partitioning of the R nuclear configuration space, Eq. (1), reflects 
the relative importance of various coordinate domains in the analysis of minimum 
energy reaction paths. In particular, Do domains reflect the. distribution of the 
two most important subsets of critical points: minima of equilibrium nuclear 
geometries and the saddle points of transition "states" [32]. Since the union of 
all D~ domains with Dexcl is the full R nuclear configuration space, Eq. (1), the 
union of their closures in the metric topology T is also R, 

R = UlS~ ~6o~o~. (23) 
~,i 

The D ,  domains and Dexcl form a generating subbase 

iop  i = {O~} ~ {Dexcl} (24) 

for a unique topology To, on R. Since elements of D' are disjoint sets, D'  is 
also a base for topology To,. Clearly, R ~ To, due to Eq. (1), and • c To,, since 
O is the empty union of sets in D'. 

The (R, To,) topological space is closely related to a topology on the energy 
hypersurface E itself. The images of the D~, and Dexcl elements of subbase D', 
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generated by mapping _E, i.e. sets 

D~z. i i i = _E(D,), D ,  cD' ,  D ~ E c E ,  (25) 

DexclE = _E(Dexd), De=1E D', DexclE c E (26) 

define a cover of the E energy hypersurface. By the definition of the hypersurface, 
and by virtue of Eq. (1), the union of all these images is the hypersurface E itself, 

i 
E = U D ~z ~ D exilE. (27) 

Ix,i 

These images form a generating subbase D'  E, defined as 

D~ i z = {D.E) ~ {D~clE}, (28) 

for a unique topology TD'E on hypersurface E. D~ itself is also a base for TD'E. 
Since mapping E : R  --> E is used to define the subbase for the TD'E topology, it 
is evident that E is TD,--TD'E continuous and its inverse mapping, projection 
FI_E = _E -~ is TD'E -- TD' continuous; they establish a one-one and onto assignment 
between subbases D' of TD, and D~ of TD'E, consequently, inverse images of 
Tu,z-open sets are TD,-open and vice versa. Mapping _E: R-->E is pointwise 
one-one and onto, consequently, E is a homeomorphism between topological 
spaces (R, TD,) and (E, T~,E). The pair of topological spaces (R, To,) and (E, TD'E) 
may then be studied simultaneously since any topological property of (R, ToO 
is also a topological property of (E, TD'E). 

Another topology, TD,, on R, also defined in terms of domains D~ and D~x~ 
may be given by taking the set of T-closures, 

D" = {/5 ~} u { / ~ e x c l }  (29) 

as defining subbase. 

_E-images of elements of D" generate a defining subbase for topology TD,,E on E. 

Particularly useful are the topology To of defining subbase D, where 

D = D '  u D", (30) 

and the equivalent topology ToE of defining subbase 

DE = D ~  ~D~.  (31) 

Clearly, the mapping _E is a homeomorphism between topological spaces (R, To) 
and (E, TOE). 

Every D~ domain as well as every boundary set [32] Bo'~ o'2...o'k denoted in 
it 1 , vt 2 o~ k 

short as B~i~ ik and defined as the intersection 1 "" /~k 

k 
i l i 2 . . . i k  -- il 

B~1~2..  ~ = C~ (32)  D lxl, 
l = l  
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is a TD-open set in R. Similarly, Dexcl and any BD q-..D ikD �9 boundary set 
~x I ~ k  e x c l  

k 

B ~ i l  nikl-~ ~-~ -it ~ . . . ~  . . . . .  = D~t n/gexd (33) 
/ = 1  

is a To-open set in R. 

Boundary sets BED~I...D~ k and  BED~I-..D~D .... in topological space (E, ToE) are 
TDz-open sets and are defined by equations analogous to Eqs. (32)-(33). 

The TD topology in the nuclear configuration space R and the equivalent topology 
Toe on the energy hypersurface E preserve only those structural features which 
are relevant to the curvature properties of equipotential contour surfaces, and 
treat any other property of R or E as irrelevant. This feature clearly shows the 
principle of a topological analysis, as such an analysis may concentrate on a set 
of particular properties designated as topological by the choice of open sets, and 
all other non-topological properties are swept away and disregarded. For 
example, in the (R, TD) and (E, TDE) topological spaces energy relations such 
as relative stabilities of equilibrium nuclear arrangements are non-topological 
and are non-applicable. In spite of this, not all links with a metric space model 
are severed. By definition, a D~ domain is a connected set with the general 
property that for every,_r ~R in a locally defined n-lR(_r) subspace of metric 
space R, where n ~R(_r) is orthogonal to the gradient g(_r), the n - 1  
dimensional Hessian matrix ~-I_H([) has exactly/_~ negative eigenvalues [32]. 

Topological space (E, Toe) has the following chemically significant properties: 
(1) All energy minima of equilibrium nuclear geometries belong to sets D/oE, 

open in Toz. 
(2) All saddle points of transition "state" geometries belong to the sets D'oz, 

open in Toe. 
(3) Ideal, minimum energy reaction paths are stable with respect to displace- 

ments defined in the metric topology, only in sets DiE, open in ToE. Note, 
that whereas the displacements are defined in the metric topology [32], 
nevertheless, the stability of minimum energy paths is a Toz-topological 
property. 

(4) For any point of a BEoi~...D~k boundary set or that of a boundary set 
BED~...D.~tlDexd, where I-->2, the corresponding "-1_H(s Hessian matrix in 
the local "• subspace of R is singular. This result is a direct con- 
sequence of Theorem 2, Ref. [32]. 

This property (4) may be utilized for the determination of boundary sets in 
(E, TDE). A singularity-following algorithm applied on the locally defined 
n-~ _H(_r) Hessian matrices in metric space R may be used to determine boundary 
contour hypersurfaces of D 2 domains in metric space R. 

Topology TD, is coarser than TD, since every element of D'  is a TD-open set. 
On the other hand, boundary sets given in Eqs. (32-33) are To-open sets but 
not TD,-open sets. Similarly, topology TD,, is coarser than TD, whereas TD, and 
TD,, are non-comparable. 
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3.3. Catchment Region Topologies; "Reaction Topology" (R, Tc) 

In the metric topological spaces (R, T) and ("+IR, n+lT) the steepest descent 
reaction path P r c R  and steepest descent relief path n+lP-+l_,c"+XR are 
defined as the path with origin _r ~ R which follows the negative gradient -g(_r), 
and its image under the mapping _E:R -~ E, respectively [32, 33]. The set of all 
steepest descent paths {Pr} with origins not in the T-closure/}excl, i.e. _r ~/~xcl, 
is partitioned i0to equivalence classes by their extremities which are either critical 
points _rc, _rc s R or points in ESexc~ [33]: 

p(rc) = {p_~: rc ~ Pr} (34) 

and 

P(Oexcl) ={Pr: Pr ('~/~excl ~ ~}. (35) 

That is, 

{Pr, Pr: _r ~ D~x~l} = U P  (re) w P  (~176 (36) 
_rc 

where the sets on the right hand side are disjoint. This relation implies an 
equivalence class partitioning for the origin points and defines a function rl (_r) = 
rE which assigns to each origin point _r the corresponding extremity _rE. The 
catchment region C (-to of critical point _rc is defined as 

C (-r~) = {-rc, _r, -r: -rc ~ Pr} (37) 

i.e. the set of all origin points of steepest descent paths of equivalence class 
p(r~), or, equivalently, as the set of all points from where a steepest descent 
path terminates at critical point _rc [33]. Similarly, the catchment region of/5r 
is defined as 

C (Oexel) ={ r , _ r :  Pr ('3J~excl ~ ~ } "  (38) 

By writing -r~,k)- for the k th critical point of index A, the partitioning of 
the nuclear configuration space R into catchment regions, Eq. (2), may be 
written a as 

R = U cr(~'k' ~j CO . . . .  k..j/~excl" (39) 
~-,k 

Eq. (39) is a proper partitioning since the sets on the right hand side are disjoint, 
as a consequence of the equivalence class partitioning of steepest descent paths. 
Consequently, the union of the T-closures of these sets, 

R = ~ d r(D'~) w d ~176 w J~excl, (40) 
A,k 

is a cover of space R. The sets on the right hand side of Eq. (39) form a defining 
subbase 

C # = { c r ~  'k) } ~.j { C  j[~ .. . .  } k..) {Oexcl } (41) 

1 Parentheses of superscript of C will be omitted. Also, when emphasis will not be necessary, 
(~, k) subscript C of critical points _r c' will be omitted. 
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which is also a base for a unique topology Tc, in the nuclear configuration 
space R. 

Since elements of C'  form a cover for the nuclear configuration space R, their 
images generated by mapping _E : R -~ E form a cover for the energy hypersurface 
E:  

E = U C-~ ~'~' ~ C~ ~176 ~/)exc~E (42) 
A,k 

where 

C-~ ~'~ = _E(C -~~' ), (43a) 

C~ . . . . .  E_ (C o .... ), (43b) 

/ )  e,c~E = _E(/Sexc,). (43c) 

The sets on the right hand side of Eq. (42) form a defining subbase for a unique 
topology Tc,E on the energy hypersurface E. Analogously to the case of D ,  
domain topologies, the (R, Tc,) and (E, Tc,~) topological spaces are homeomor- 
phic as it is established by mapping _E :R->E,  which is a homeomorphism 
between the two topological spaces. 

A unique pair of topologies, Tc,, and TC"E is defined by the sets 

C t! : { C  -r(x'k) } ~1 {C/)excl } ~.j {/Sexc[} (44) 

and 
C ~  = { d - ~  A'k) } --D 1 u {CE ~176 } ~ {/5 ~xolE} (44a) 

respectively, as defining subbases. Here the sets on the right hand side of Eq. 
(44a) are the respective images of sets on the right hand side of Eq. (44), 
generated by mapping E : R  + E .  Clearly, mapping _E is a homeomorphism 
between topological spaces (R, Tc,,) and (E, Tc"E). 

A unique topology Tc on R, finer than both Tc, and Tc,, is generated by defining 
subbase C, where 

C :  c ' u  C". (45) 

Homeomorphic _E-images of elements of C generate the defining subbase CE 
for the unique topology Tc~ on E. 

Open sets of the (R, Tc,) topological space, i.e. the C r~"'k~ catchment regions 
and their unions, form the basis for a rigorous quantum mechanical analysis of 
structural relations between molecules. Since all steepest descent paths in a 
catchment region C r'~'~ ~ Tc, lead to and terminate at critical point _r (x'k), it 
is natural to associate the structural identity of a molecular system of any nuclear 

r(~ k) 
geometry _r within catchment region C~ " with critical point _r (a'k). There 
are compelling physical reasons for assigning a unique structural label to an 
entire catchment region C r(~'~ c R. On the one hand, even within the Born-  
Oppenheimer approximation, no molecule may sustain a fixed nuclear geometry. 
The nuclear geometry of an energetically stable molecular species shows incessant 
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variations within a neighbourhood of the equilibrium geometry. That is, the 
concept of chemical structure must correspond to an open set in the nuclear 
configuration space R, and not to a discrete point. On the other hand, the limits 
on the nuclear geometry variations that still preserve the chemical identity of 
the molecule, i.e. that preserves the assignment of the nuclear geometry to that 
of a critical point, can be defined precisely by the catchment regions. As long 

r(X,k) as a geometry variation does not lead out of C- , the eventual return of the 
molecular system to the nuclear geometry of _r (x'k), is likely, and within C -~(~'~ 
one may regard the chemical identity of the molecule preserved. 

Some of the chemically significant properties of catchment region topologies 
are listed below as ( 1 ) . . .  (6). The topological definition of molecular struc- 
ture is ultimately based upon the topological properties of the _E(_r)= 
(~(r)[/-I(_r)[tO(_r)) energy expectation value functional: 

(1) Chemical structure is defined as an open set which is an element of base 6" 
of the topological space (R, Tc,). Elements of base C'  (Eq. (41)) represent 
all distinct molecular structures of nuclear configuration space R [33]. 

The subset of all catchment regions for minima {_r ~~ contains all stable molecular 
structures, 

(2) {C r(~ } c C'  (46) 

whereas the subset 

(3) {C r(lk~ } = C'  (47) 

contains all molecular structures that correspond to transition "states" of 
chemical reactions on E, since the Tc,-open sets C rCl'~ are the catchment 
regions of saddle points {r (l'k)} of index A = 1. 

Chemical structures {C -'(~'k~ } with index A > 2 are energetically unstable and are 
of lesser chemical importance, since none of the associated critical points {_r (x'k) } 

cr(h,k) (A->2) can fall on minimum energy reaction paths [6]. Whereas a 
_(x&) 

catchment region of A --- 2, i.e. the "basin" associated with attractor _r , A - 2, 
may have non-empty interior (similarly to the A = l example of Ref. [33a], Fig. 
5), a non-degenerate _r (x'k) critical point (A -> 1) must belong to the catastrophe 

r(X'.k') 
set for another catchment region C- , 6,,,V6kk' = 0. Function r/(_r) (and, of 
course, the characteristic functions of all catchment regions involved) show 
instabilities in the neighbourhood of _r (x'k). 

The number of distinct chemical structures in R is equal to the number of 
elements in base C', Eq. (41). Disregarding sets C ~ .... and/Sex~, this number is 
equal to the number of critical points {_r (x'k)} in / )~  ex~, i.e. those critical points 
which are in R but not in/)~x~. Furthermore,  the number of stable molecular 
structures, i.e., the number of open sets C r(~ is clearly equal to m0, the number 
of _r (~ critical points of index A = 0 (minima), and the number of transition 
"state" structures is equal to ml,  the number of critical points of index A = 1. 
In general, the set of all structures may be given as the union 

{cr(X'k)} ~-- U r(X'k) max - {C- }k=l (48) 
h=0 
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and similarly for critical points 

{_r ~'k)} = 0 ~_r" f cA k)~m~k=l. (49) 
k = 0  

The numbers too, ml, m2 �9 �9 �9 m,  of critical points of indices )~ = 0, 1, 2 . .  �9 n, 
respectively, that is, the number of stable molecular structures (too), transition 
"states" (ml) and the number of various unstable molecular structures C r~'k, of 

~ 2 (m~, }t -> 2), are not arbitrary and lower limits are established by the Morse 
inequalities [34, 42, 43]. These constraints in combination with the neighbour 
relation, Eq. (3), defines constraints on the total number of elementary reaction 
mechanisms on the hypersurface E [33]. The neighbour relation, however, 
involves the T-closures of catchment regions, consequently, topological space 
(R, Tc) with defining subbase containing the closures of catchment regions is 
more suitable for the analysis of neighbour relations and reaction mechanisms 
than topological space {R, Tc,}. Whereas {R, Tc,} leads the most directly to a 
topological definition of molecular structure, the space {R, Tc} is ideally suited 
for a topological study on structural relations and reaction mechanisms [33]. 

r ( O , i )  �9 r ( O . k )  
Consider three simply connected Tc-open sets C- , C r(~''~ and C- , and 
for simplicity assume that C r(~'j~ = W (~'j'k), the common boundary of C -r(~ and 
C r(~ Consider two different paths p(O) and p(a), both of which lie in the union 

r(O,k) M (i'Lk) -~ C r~~ u W (i'l'k) k..J C -  , 

that is p~0), p~l~ c M~,i,k). We shall assume that the origin and extremity are 
r ~~ and r ~~ for both paths, and that both p~0) and p~l~ pass through 
r~ld)~C r~'7~. Assuming a parametrization for these paths, Pt~  and 
P~): I ->R,  where I = [0, 1], the unit interval, there exists a (generally non- 
unique) homotopy _H:I |  ~ R, such that _H(t, 0) = P~~ _H(t, 1) -- P~l)(t), and 
for every _H(t, a) ,  P ~ ) ~ M  ~i'~'~. In the special case when p~0~ is the minimum 
energy path between r ~~ and _r ~~ the reaction paths generated by H are 
homotopically equivalent to the minimum energy path p~0~ and they involve 
only the same set of chemical structures. In chemical terms, all these paths 
represent the same reaction mechanism. 

This analysis may be extended by replacing the critical points by arbitrary three 
points _r ~), _r ~i), _r ~), one in each of C r-~~ W ~'~'~) and ~(7 r~~ respectively. 
Considering all homotopies _/4 for all triplets ( . . . . . . .  the point set 
union of all reaction paths P which are in M ~gJ'~) is M ~'i'~) itself. Consequently, 
it is natural to associate M (i'i'~) with the reaction mechanism involving the above 

�9 1 three chemical structures.  

By a geographical analogy, consider a collection of all paths passing through a fixed sequence 
of valleys and mountain ridges. As far as the general itinerary is concerned the exact details of these 
paths are unimportant, and any path which follows the given sequence of valleys and ridges 
corresponds to the same itinerary. That is, the itinerary can be represented by the collection of all 
these paths. The paths and the itinerary are static features of the terrain, as opposed to the dynamic 
concept of the journey itself, which is the realization of the itinerary by following a given path. On 
energy hypersurfaces the reaction mechanism corresponds to the itinerary, given as a collection of 
reaction paths or simply as a list of valleys and ridges (a static concept), whereas the chemical 
reaction is the journey itself (a dynamic concept). 
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In our topological t reatment  a reaction mechanism is defined as the point set 
union of all reaction paths involving precisely a given set of chemical structures. 

A topological generalization of the minium energy path concept is the elementary 
reaction mechan i sm of index 3 .̀ It  is defined as an open set M (i'j~'k~ ~ T c  of the 
{R, T c }  topological space, given as 

(4) M ~i'j~'k~ = C r~~ u W (i'i~'k~ w C r~~ (50) 

where 

N ,  (o 17 (~,ix) t_rc' ,_rc ) = 1 (50a) 

N ,  (x.i~) (o,k)~ ~rc ,r_c ) = 1  (50b) 

and W ~'i~'k~ is defined as the T c - o p e n  set 

W.,j~.k~ = (~.,o,,~ c~ ~-~"~') ~ C -r'~''~' ~ (&r~"" C~ ~r,O ~,). (50C) 

That  is, W ~i'i~'k~ is the union of structure C -~r with its boundary segments 
common with structures C ~-~~ and C r~~ Note that the T-closures of the 
C -~'~ structures are Tc -open  sets. It  is clear that the definition may be inter- 
preted in the metric topology as well, where the interior of C -~'*~ may be a 
non-empty  set for 1---3` < n .  Consequently, relations (50a) and (50b) may be 
valid even if C r~~ and C r~~ are non-neighbours,  

N ,  (0i) (o,k)x t_rc' ,_rc j = 0 .  (51) 

The  set of e lementary reaction mechanisms of index 3. = 1 contain a subset, 
elements of which are the most directly related to the minimum energy path 
concept. The condition A = 1 is necessary, since for a minimum energy path the 
chemical structure involved as intermediate between structures C r'~ and C -r'~ 
is a transition "s ta te"  structure C r ' ' ' ,  the catchment  region of saddle point 
r(ld) c , A = 1. Note, however,  that even in this case the condition 

N ,  (ol t  (o,k)~ (_rc' ,_rc ) = 1 (52) 

cannot replace conditions (50a) and (50b), since it is possible, in spite of (52), 
~_r(O,k) 

that the boundary segment ~_~o.,~ c~ does not contain a saddle point r ~  '~ 
with A = 1, 

~r(O,k) . (1,]) 1 Cr~~ c~*t_rc s=Q5 fora l l ] .  (53) 

Two finger-holes next to each other on a bowling ball are examples for this case, 
whereas the description of the more common cases, Eqs. (50) and (51), is 
applicable to most  actual chemical surfaces, e.g. those in refs. [44, 45] or to 
model surfaces discussed in Refs. [17, 33]. Consequently, if Eq. (53) is valid, 
then there is no minimum energy path interconnecting _r~ 'i~ and _r~ 'k~ directly. 

An elementary mechanism M (i'~'k) ~ T c  of index A is regular if 

_,c e C r`~ ~ . (54) 
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A regular e l emen tary  m e c h a n i s m  M (~'h'k~ of index A = 1 does contain  all points  
of the unique min imum energy path  P (r~'j~ which contains the non-degene ra t e  
saddle point  r~  'j~ of index A = 1 z. This is a special (al though probab ly  the most  
important)  case, and a general  e lementary  mechan i sm M (~'j~'~) may  happen  to 
contain  no segment  of a min imum energy path  at all which would  connect  _r~ 'i~ 

and _rc(~ . 

A n y  c o m p l e x  reaction m e c h a n i s m  M (~-'~) leading f rom reactant  C r<~ to a 
p roduc t  C r~~ can be defined as a T c - o p e n  set which is a union of e lementa ry  
react ion mechanisms M (~'i~'k') : 

(6) M ~i-~k) = ~_J M (id~'''~'). (55) 
I=1 

The  T c - o p e n  sets in the above  union form a t - m e m b e r  cha in  of e lementary  
reactions,  defined by the union in Eq. (55) and by the following condit ions:  

il = i (55a) 

il = k l - 1  (l > 1) (55b) 

k, = k (55c) 

il r il, if l r l'. (55d) 

That  is, molecular  structures C r~~ and C -~~ are subsets of e lementary  
mechanisms M ~ and M ~'j~,'k0, respectively, and their intersection with 
any o ther  M ~`'&''k'~ e lementa ry  mechanism is the empty  set whenever  i r k : 

C r(~ c M(fl"Jx, ~'k~), 

C r~~ c M (i#x,,'k,), 

C r~~ ~g(ii,i~,,l, kl) = 

C_r(o, k> (.~M(il,ixd, kl ) = 

for 1 > 1 

for l < t. 

(56) 

(57) 

(58) 

(59) 

For  any o ther  C rr176 molecular  s t ructure which is an in termedia te  in the complex 
mechan i sm M (i-'k~ (Eq. (55)), that  is, for C r~~ with 

m = k/ for  some l, 1 --< l < t - 1, (60) 

the following two relat ions are valid: 

C r~~ c M (i''i~'l'k') ~ M  (i'+l'ih''+l"k'+a), (61) 

and 

C rr176 ~ m  (iz'i~'~''k~') = 0 if l '  ~ I and l '  ~ l + 1. (62) 

1 By far the most common minimum energy paths are those which interconnect two minima through 
a saddle point of index h = 1. A descent from a saddle point, however, may lead to another saddle 
point on one or on both sides. When enumerating minimum energy paths by counting saddle points 
of index h = 1, these generalized minimum energy paths are also counted. 
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The notation M (i-'k) for a complex mechanism does not specify the detailed 
course of the mechanism. For a detailed specification the 

M (i-~k) = M (ivix'l'ia'ix'2"" "i"ix'*'kJ (63) 

notation is proposed.  

A t -member  chain of e lementary mechanisms with the smallest number  t for a 
given M (~-~k) interconversion process is called a minimum chain. For a fixed 
reactant and product  there may exist several different minimum chains. 

Conditions (55a-d) do not exclude the case of i = k, i.e. a cycle. The union of 
two different chains for M (i-'k) must contain a T c - o p e n  set which is a cycle; if 

M~ ~-~k) # M (i-*k) (64) 

then exists M (l-~t) c Tc such, that 

M (t-'t) c M ~  i-'k) ~ M  (i-~k)2 �9 (65) 

Due to the topological equivalence of (R, Tc) and (E, TcE), and to the equivalence 
of topological spaces (R, Tc,) and (E, Tc,E), results (1) �9 �9 �9 (6) may be given an 
equivalent formulation with reference to the TcE and Tc,z topologies. 

3.4. Topologies Based on Energy Levels 1 

Consider all points n+lr of the E m n+lR energy hypersurface, for which E(r_) =- 
A, a constant. These points form a set EA, 

EA = {n+lr: "+1r"+1 = E(_r) = A, "+l_r =_r OE(r )} .  (66) 

Any point "+lr eEA is called a point at level A.  A level C is called a critical 
level if there exists a critical point - (x,k) _rc at this level, 

n + l  ( h , k )  _ r'~ 
,_c e t c . .  (67) 

If a level set E a  c E contains no critical point then A is called an ordinary level. 

Each level set EA may be given as a union of E ~  ~ sets 

E a  = U E ~  ~ (68) 

where each E ~  ~ is a connected set and 

/ ~ )  c~/~{) = O if i # / ' .  ( 69 )  

If EA is connected, then E a  itself is the only member  of the union, 

EA = E~, ). (70) 

In general, E ~  ) is a contour hypersurface of E at level A and is analogous to a 
contour level marking a given elevation on a geographical relief map. The actual 

1 A detailed study on incidence matrices of the critical level topology has been given earlier [39]. 
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calculation of the E ~  ) contour hypersurfaces may be based on contour following 
algorithms. 

The set 

Cc ={C  (~'k~ } (71) 

of all critical levels is closed and also bounded by the absolute maximum and 
absolute minimum of E ( r )  which are themselves elements of Cc. More than 
one critical point may occur at the same level C and the set Oc of all critical 
points at C will be called the critical set at level C. 

Subsets FA, FT, c R are defined as 

FA = {_r: E(_r) -<A} (72) 

F 2  = {_r: E(_r) < A }  (73) 

and are denoted as Fc  and F c  if A = C, a critical level: 

Fc  = {_r: E(_r) - C} (74) 

F c  = {_r: E(_r) < C}. (75) 

Each of the sets FA, F;t  (and naturally Fc  and F c )  can be given as a union, e.g. 

FA = (_J F ~  ) (76) 
i 

where each F ~  ~ is connected and 

_#~,~ ~ ff'~) = Q5 if i # j. (77) 

Partitionings of FA (and of F c  and F 3 )  are defined analogously, by including 
s y m b o l -  or replacing A by C in Eqs. (76-77). 

Topologies TF, TF-, Tzc and TF3 in the nuclear configuration space R are 
defined by subbases 

~-~A = ---(i) ) 
{FA j, (78) 

F -A = {FA "~ }, (79) 

F c = {F~ ) }, (80) 

and 

F - c  = {Fc (I~ }, (81) 

respectively. The elements of the F A and F -A subbases are partitioning sets for 
every level A, whereas the elements of the F c and F - c  subbases are partitioning 
sets for all critical levels C (A'k~. All four subbases are actually bases for the 
respective topologies, since their elements are either pairwise disjoint sets or 
their intersection is one of the sets of the pair, thus it is an element of the 
subbase. For example, 

F~ '  # F ~  ~ (82) 
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and 

) O (83) 

is possible only if either 

A > B  and F g  ) C F ~  ) (84) 

o r  

A < B  and F ~  ) C F ~  ). (85) 

Using the technique employed for the TD and Tc topologies, images of the 
elements of the subbases, generated by mapping _E on the hypersurface E, give 
defining subbases for four topologies on E, denoted by TvE, TF E, Tvcz and 
TF3E. Clearly, the topological spaces (R, TF), (R, TF-), (R, TEe), (R, TF~) and 
(E, TEE), (E, TV-E), (17., TFcE), (E, TF3E), respectively, are pairwise homeo- 
morphic. 

For fixed energy value A the union of the classically accessible regions of the 
nuclear configuration space R is precisely the TF-open set FA. For disconnected 
Fa  the TF-open sets F}~ ~ of the union in Eq. (76) define all those subdomains 
among which no inter-conversion may take place at energy A. If A and B, 
A < B, are non-critical levels and if there is no critical level between A and B, 
then the number of subsets in the partitioning (76) of FA and FB is the same, 
that is, in 

k 

FA = U (86) 
i=1 

k' 

FB = [,_J F(~ ) (87) 
i=1 

the upper limits are the same, 

k = k ' ,  (88) 

and one can choose the indices such that 

F ~  ) c F~  ). (89) 

Consider a continuous change in energy as level B approaches a critical level 
C. A merger of two subdomains F~  ) and F~  ), may occur only at a critical level 
C as B --) C. However,  such merger does not necessarily occur at every critical 
level. As an example, in a system of lakes the water level may rise to the top 
of a rock in the middle of one of the lakes (i.e. to a critical level C (n'k), 
corresponding to a local maximum, h = n = 2), without the merger of two neigh- 
bour  lakes. However,  as pointed out above, a merger of two lakes implies a 
critical level (i.e. a C (x'k) of a saddle point (x,k) r_c , A = 1). 

When varying the energy value E, all topologically significant changes occur at 
critical levels, underlining the importance of critical level topologies TFc and 
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TVcE. The Tvcopen F~  ) sets of the nuclear configuration space R, with 

C = C (l'k) (90) 

are of particular importance, since points of these sets represent all classically 
accessible nuclear configurations in the particular case when the minimum 
activation energy for the reaction of an elementary mechanism M (i'k''~) is 
provided: 

C (l'k) = absolute activation energy for M (i'k''t) (91) 

where 

k = k~. (92) 

Whereas C (l'k) is measured on an absolute energy scale, the differences C ( l ' k )  - 

C (~ and C (~'k) - C  (~ provide upper bounds for the minimum relative activa- 
tion energies of the forward and reverse processes, respectively, provided that 
elementary reaction mechanism M (i'k''~) is followed. 

3.5. Topologies TCFc, TDC and TDCFc 

As the last example indicates, a comparison of structural and interconversion 
properties (described by the Tc topologies) with energy relations (described by 
the TF topologies) leads to comparisons between Tc-open and (in the above 
case) TFc -open sets. In the topological sense, however, topological spaces (R, Tc) 
and (R, TFr are non-comparable, since in general, Tc-open sets are not TFr 
and TFr sets are not Tc-open either, that is, neither topology is weaker 
than the other. Similarly, topologies TD, Tc and TD, TFc are also pairwise 
non-comparable, as shown by model surfaces analysed in Refs. [32, 33]. 

The nuclear configuration space R, however, may be topologized by a topology 
which is finer than both Tc and TFc. In such a topology molecular structures, 
reaction mechanisms, as well as accessible domains defined by energy levels, are 
open sets. Their intersections define open sets with specific structural and 
energetic properties. 

In general, there are infinitely many such topologies on R which fulfill the above 
requirements. However, a unique topology TcFr can be defined by subbase 
C u F c, i.e. by the union 

CuF~ = { C - ~ ' - * ' } u { C  ~ .... } , . . , { C - ~ ' . " ' } ~ { ~ o o = , } ~  - ~ {Dcxcl} u {r c , (93) 

(compare Eqs. (45 and 80)). Clearly, topology TCFc of the above subbase is 
finer than both Tc and TF~. Topology TCF~E on the energy hypersurface E is 
defined the usual way, by homeomorphic _E-images of TcFcopen sets of R. Any 
given TcFc-open set of R and the associated TcecE-open set of the energy 
hypersurface have well defined structural properties, admit a given set of reaction 
mechanisms and fulfill a well defined set of energy relations with other open 
sets. More importantly, these properties and relations are computable simply 

r(x,k~ m(i,&,k), by generating the appropriate intersections with TcFc open sets C , 
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M (i1'j'~'c'i'j'''k~) andF~ ), for molecular structure, elementary mechanism, complex 
reaction mechanism and energy level, respectively. For example, TcFc-open set 
G has chemical structure C r~'k~ if 

G n C r~'k~ ~ O, (94) 

and G ~ TcFc admits complex reaction mechanism M (q'i",~'''i'J~-'k') if 

G n M (i~J~.c''~''i~,'k'~ = M (q'j'.c''i'i~,'k'~, (95) 

the latter being a sufficient but not a necessary condition. 

Several other combinations of chemical properties of open sets in the To, Tc 
and TF topologies may be analysed by defining topologies using a union of 
the appropriate subbases. Topology Toc of R is defined by subbase 

D w C (96) 

(compare to Eqs. (32 and 45)), whereas topology TocFc is defined by generating 
subbase 

D u C ~ Fc = D u C ~ {F~}. (97) 

Tt, c is finer than To and Tc, whereas TDCFc is finer than TDC and TFr 

Toc-open sets of R correspond to well defined curvature properties of E and 
structural properties of the nuclear arrangement, and these sets are suitable for 
analysing the stability of reaction paths associated with a given reaction mechan- 
ism M (q'lx'~'''i'J~'''k`), itself a TDc-open set of R. If reaction path stability, reaction 
mechanisms and energy relations are to be considered simultaneously, the 
(R, TDCFc) topological space and the G c TocFc open sets define the collection 
of those nuclear configurations which exhibit a given combination of energetic, 
mechanistic and reaction path properties. _U-images of sets H ~ Toc and G 
TDCFc by homeomorphism _E define the TDcE-Open sets and TDCF~-open sets 
of topological spaces (E, TDCE) and (E, TDCFcZ) on the energy hypersurface E, 
equivalent to topological spaces (R, TDC) and (R, TDCFr respectively. 

4. Applications 

The topological theory of energy hypersurfaces is based on the replacement of 
individual points of the nuclear configuration space R, as fundamental chemical 
entities of the model, by open sets of R. One can compute all topological 
properties in the given topology by generating intersections of these open sets. 
Consequently, applications of the topological theory requires, at most, the actual 
calculation of the boundaries of elements in the subbase only, rather than the 
calculation of the energy hypersurface itself. The dimension of these boundaries 
is always lower than that of R itself what results in a considerable simplification 
of the computational problem. (Even with such simplifications, however, the 
required computational work can be extremely time consuming in higher 
dimensions). 
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As it has been pointed out earlier [32] the determination of the boundaries of 
sets in subbase of TD is equivalent to the determination of point sets in R where 
the "-l_/J(_r) Hessian matrix is singular. On the ab initio Hartree-Fock level 
of approximation this task can be accomplished by the use of available programs, 
such as the extended version of Gaussian 80, which can calculate analytical first 
and second derivatives of the hypersurface [56]. The calculation of boundaries 
of the Tc subbase elements is equivalent to the determination of the catastrophe 
set of function rt [50], whereas one can obtain the boundaries in the TF topology 
by using standard contour following algorithms. 

The (R, Tc) "Reaction Topology" is the basis for the global analysis of reaction 
networks, comprising the set of all possible reaction mechanisms which involve 
a given set of nuclei and a fixed number of electrons [57]. Applying the results 
of the present work, several theorems are proven on relations between reaction 
mechanisms, reaction steps and activation energies, and in particular, on the 
properties and determination of "shortest" reaction mechanisms [57]. These 
results have a variety of possible applications in computer-aided synthesis 
planning. 

The topological model of the present work has also been applied [58] to the 
analysis of the product space R |  where Z is the abstract nuclear charge 
space, where the vector components are variable nuclear charges, as mentioned 
in the introduction. This product space has remarkable topological properties, 
which are summarized in two theorems [58], leading to geometry dependent 
and geometry independent lower and upper bounds for the electronic energy. 
Contrary to the applications for the analysis of reaction networks, which require 
considerable amount of computations, the applications of the above two theorems 
require only "back of the envelope" type calculations. Several numerical 
examples for actual molecules are presented in Ref. [58]. 

Symmetry in the metric space and properties of level set topologies of the nuclear 
charge space have been interrelated using a simple model of Hydrogen substituted 
molecules [59]. A topological inequality has been derived for general Hamil- 
tonians with linear parameters, which inequality can be used as a simple test for 
the validity of perturbational expansions [60]. 

5. Summary 

Primary concepts of chemistry, such as molecular structure, reaction mechanism, 
and reaction mixture of a given total energy, are shown to be of topological 
nature. By introducing appropriate topologies into the nuclear configuration 
space R, or equivalently, into the energy hypersurface E itself, a topological 
analysis may concentrate on a selected set of chemical properties. These proper- 
ties are designated as topological by the choice of open sets, and all other 
properties of the energy hypersurface, being non-topological, are disregarded. 
A topologization of E, however, is not merely stripping away the disguise of a 
complicated multidimensional energy hypersurface: it also gives rigorous 
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definitions for somewhat vague chemical notions, and at the same time forms 
the basis and raw material for a subsequent application of the powerful and 
elegant machinery of algebraic and differential topology. 

A topological theory of potential energy hypersurfaces, "reaction topology",  
provides a common basis for structural chemistry, reaction mechanisms and 
many photochemical processes. 

In a forthcoming paper we shall describe an application of homotopy theory to 
a family of energy hypersurfaces of various electronic excited states. 

Acknowledgement. This work was supported by a research grant from the Natural Sciences and 
Engineering Research Council of Canada. 

Appendix 

The following is a brief list of the most essential topological concepts and 
definitions employed in this paper. For more details the reader should consult 
the texts listed in the References. 

Let  X be a non-empty point set, and T is a class of subsets of X, 

T={T,~},T,~cX. 

T is called a topology on X if T satisfies the following criteria: 
(1) set X and the empty set 0 belong to 7", 

X , ~ T  

(2) the union of any number of sets in T belongs to T, 

Urger 

(3) the intersection of any two sets in T belongs to T, 

T~nT~eT .  

The pair (X, T), i.e. set X with the given T topology is called a topological space. 

The sets in T are called the T-open sets, or simply open sets. If A c X is T-open, 
its complement A c = X \ A  is T-closed. Whether  a set is considered open or closed 
thus depends on the topology; if T1 and T2 are two different topologies on set 
X, a set A c X may be Tl-open but Tz-closed. In fact, for topology T a topology 
T c, called cotopology, can be defined where the TO-open sets are precisely the 
T-closed sets and vice versa. 

Suppose that for two topologies T1 and Ta on X every Tt-open subset of X is 
also T2-open. Then 7"1 is a subclass of T2, T1 c 1"2 and we say that topology T1 
is weaker (coarser) than 7"2, or /'2 is stronger (finer) than T1. Two topologies 
are not comparable if neither is weaker than the other. 
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N c X is a neighbourhood of _r ~ X if there exists an open set G ~ T such that 
r ~ G c N. A subclass B c T is a base for topology T iff every open set G ~ T 
is a union of sets in B. A subclass S c T is a subbase for topology T iff finite 
intersections of members of $ form a base for T. An important property of 
subbases will be often utilized in the forthcoming chemical applications: any 
class A of subsets of X is the subbase for a unique topology T. 

For topological spaces (X1, T1), (Xa,/'2) a function f from X1 to X2 is continuous 
iff the inverse image of every T2-0pen subset of X2 is a Tl-open subset of X1, 

f-1(G)eT1 if G e T2. 

Topological spaces (X1, 1"1) and (X2,/2) are called topologically equivalent or 
homeomorphic if there exists a function f : X l - ~  X2 which is bijective and both f 
and f-1 are continuous. A bijective function f is one-one and onto, that is, f 
assigns a unique element p ~ X 2  to each element r~X1  and each element 
p e X2 is assigned to an element _r ~ X~. 

A property is called topological or topological invariant if it is a property for all 
topological spaces in an equivalence class generated by the equivalence relation 
"topologically equivalent". Length, boundedness, or being a Cauchy sequence 
are not topological properties, whereas connectedness and compactness are. 

A topological space (X, T) is disconnected iff X is a union of two, non-empty, 
disjoint open subsets, 

X = A ~ B , A , B  # Q , A  c~B = O , A , B  ~ T. 

A topological space (X, T) is connected if it is not disconnected. A connected 
open subset is also called a domain. A set X is simply connected if every closed 
path in X is contractible to a point. 

Consider a general set X and a subset A c X. If F = {Fi} is a class of open subsets 
of set X such that A c [._Ji F~ then F is called an open cover of A. If F contains 
only finite number of F~ subsets, then F is called a finite cover. Subset A of a 
topological space X is compact if every open cover of A contains a finite subcover. 
Compactness is a generalization of properties of closed and bounded intervals. 

A general nuclear configuration space R, however, is not necessarily compact. 
Nevertheless, subsets of R may be "made"  compact by various compactification 
techniques. 

The topological space (Xoo, Too) is the Alexandrov one-point compactification 
of topological space, (X, T), where Xoo = X u {~}. One single point 0% the "ideal 
point" of infinity, distinct from every other point of X is added to X, and 
topology T~ consists of the following sets: 
(1) each set in T, 
(2) the complement in Xoo of each closed and compact subset of X, that is 

Too = T u {A : A = Xoo\B, X \ B  ~ T, B compact in X} 
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By the above definitions, topological space (X, T) is embedded in the compact 
topological space (Xoo, To), since (X, T) is homeomorphic to a subspace of 
(X~, Too). An illustration of the one-point compactification S of the (x, y) plane 
A of the Euclidean 3-space, which is not compact, is shown in Fig. la. The 
center of sphere S of unit radius is located at point (0, 0, 1). The straight line 
passing through the "north pole" (0, 0, 2), denoted as 0% and any point _r~A, 
intersects the sphere S in exactly one point _r'r o% and thus assigns a unique 
point _r'~ S to r ~ A. This assignment is a homeomorphism from A to S\{ec}, 
and generates an embedding of A in S. Consequently, since S is compact, S is 
a compactification of A. 

The Alexandrov one-point compactification is applicable to subspaces mR of 
the nuclear configuration space R, if the same energy value E~  is obtained for 
any nuclear geometry change where I~] ~ co, m_r e mR. A different transforma- 
tion may be applied for subspaces PR of R, within which the energy hypersurface 
is periodic (e.g. the subspace of internal coordinates corresponding to bond 
rotations). A representative subdomain of PR, analogous to the unit cell of crystal 
lattices, may be defined, within which no periodicity occurs [21, 22, 33]. For this 
unit cell U the Born-K~trmfin boundary conditions lead to a mapping of U c PR 
to a circle if p = 1, or in general to a torus if p > 1. In Fig. lb the p = 2 case is 
illustrated. Note that in U points _a, _b, _c and _d are equivalent, and are 
transformed into a single point _p of torus T. Line segments [a, b], [c, d] and 
[a, c], [b, d] are pairwise equivalent in U by periodicity, and these pairs of 
equivalent segments are transformed into unique lines on the torus T. 
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